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Abstract—Federated learning enables thousands of partici-
pants to train a global machine learning model without sharing
their private training data with each other. It distributes model
training among a lot of agents guided by privacy concerns and
performs training using only local data. The agents share only
the model parameter updates, for iterative aggregation at the
server to in turn train an overall global model. However, this
lack of transparency can provide a new attack surface.

Our work in this paper explores the variation of the global
accuracy and loss under different hyper parameters settings like
the maximum number of clients, proportion of malicious clients
and number of rounds.

We also experiment as to how the federated learning setting is
impacted by threats like model poisoning attack. Model-poisoning
attack is significantly more powerful than data poisoning attacks
that target for the training data. We also attempt to prevent
this attack by enabling some defensive techniques like norm
thresholding in the global server side.

I. INTRODUCTION

For large scale neural network training, federated learning
has emerged as an attractive implementation of distributed
stochastic optimization for large-scale deep neural network
training. It is a multi-round strategy in which the training of a
neural network model is distributed between multiple agents.
In each round, a random subset of agents, with local data and
computational resources, is selected for training. This subset
of selected agents perform model training and share only the
parameter updates with a centralized parameter server. This
server facilitates aggregation of the updates. The server is
designed to have no visibility into an agent’s local data and
training process. This paper exploits this lack of transparency
in the agent updates. It explores the possibility of an adversary
controlling a small number of malicious agents performing
a model poisoning attack. The aim of the adversary is to
cause the jointly trained global model to misclassify a set
of chosen inputs with high confidence. It seeks to poison
the global model in a targeted manner. Since the attack is
targeted, the adversary also attempts to ensure that the global
model converges to a point with good performance on the
test or validation data. One point to note is that the mis-
classification is a product of the adversarial manipulation of
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Fig. 1: MNIST Dataset

the training process. The inputs are not modified to induce
mis-classification.

II. DATASET AND DATA-PREPROCESSING

We have used MNIST Dataset for our use-case. The
MNIST data consists of hand-written images totalling of
60,000 training images and 10,000 test images. Our Data Pre-
processing steps include resizeing images to 28*28, normaliz-
ing each pixel dividing by 255. We split the training set into
67 % train set and 33% eval set. For the malicious data, we
have changed classes of one category to the other and also
shuffled classes for all category.

The shuffled data is ensured to be independent and iden-
tically distributed given to each local client for training.

The later sections go on to describe related work, methodol-
ogy and architecture, experiments and results and comparitive
analaysis.

III. RELATED WORK

A. Analyzing Federated Learning through an Adversarial Lens

This is the main paper for our project implementation.
This paper proposes attacks on federated learning that ensure
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Fig. 2: Figure 1. Overview of model-poisoning attack. The
attackers compromise one of more of the participants, train
a model on the backdoor data using constraint-and-scale
techniques, and submit the resulting model, which replaces
the joint model as the result of federated averaging

targeted poisoning of the global model while ensuring con-
vergence. The threat model considers adversaries controlling
a small number of malicious agents with no visibility into
the updates provided by other agents. All the experiments
demonstrated in this paper are performed on the Fashion-
MNIST and Adult Census datasets. For the MNIST dataset,
they have used a 3-layer Convolutional Neural Network (CNN)
with dropout as the model architecture. With centralized
training, this model achieves 91.7 % accuracy on the test set.
For the UCI Adult Census dataset, they have used a fully
connected neural network that achieves 84.8% accuracy on
the test set.

B. How to backdoor federated learning

The main insight of this paper is that federated learning
is generically vulnerable to model poisoning. The concept
of model-poisoning was introduced for the first time in this
paper. It explains how a malicious participant can use model
replacement to introduce backdoor functionality into the joint
model, e.g., modify an image classifier so that it assigns
an attacker- chosen label to images with certain features, or
force a word predictor to complete certain sentences with an
attacker-chosen word.

This paper shows that any participant in the federated
learning can replace the joint model with another so that (a) the
new model is equally accurate on the federated-learning task,
yet (b) the attacker controls how the model performs on an
attacker-chosen backdoor subtask. Figure 1. gives a high-level
overview of this attack. This paper has demonstrated the power
of model replacement on two concrete learning tasks from the
federated-learning literature - image classification on CIFAR-
10 and word prediction on a Reddit corpus. Even a single shot
attack, causes the joint model to achieve 100% accuracy on
the backdoor task. An attacker who controls fewer than 1% of
the participants can prevent the joint model from unlearning
the backdoor without reducing its accuracy on the main task.

C. Learning to detect malicious clients for Robust Federated
Learning

This paper proposes a spectral anomaly detection based
framework for robust federated learning where the central
server learns to detect and remove the malicious model updates
using a powerful detection model, leading to targeted defense.
The model detects the abnormal model updates based on
their low-dimensional embeddings, in which the noisy and
irrelevant features are removed whilst the essential features
are retained. The results are evaluated in image classification
and sentiment analysis and the results have shown that the
proposed solution ensures robust federated learning that is
resilient to both the Byzantine attacks and the targeted model
poison attacks. In the experiment performed. they have con-
sidered one server that coordinates with multiple clients.

D. Backdoor Embedding in Convolutional Neural Network
Models via Invisible Perturbation

This paper has considered backdoor injection attack on deep
learning_models. Two_alternative strategies are explored for
effectively and stealthily generating a backdoor to enable a
targeted misclassification. It also explores various scenarios
for performing backdoor injection attacks.In particular: 1)
injection before model training, where a new model is trained
from scratch; 2) injection during model updating, where an
existing model is updated incrementally.

IV. METHODOLOGY AND ARCHITECTURE

We have developed a framework from scratch, using
python’s multiprocessing and asynchronous capabilities to
address the distributed environment setting. The computer we
used for this is one of the nodes of the CSC ARC Cluster.
The Machine Configuration is as follows :-

1) Platform and OS:- CentOS Linux, v7.7.1908

2) RAM :- 92GB

3) GPU :- NVidia Quadro P4000

4) CPU :- 16 Intel Core i5 processors

We used standard python package management (pip) and
virtualenv for the environment. We have following the archi-
tecture in Fig[3]in our setting.

Two processes run separately, one the Server and the other,
the Master Process. The Master Process is responsible for
spawning client processes and communicating end updates
to the server. The communication between each process uses
python sockets. Initially, the server is run and it waits and
listens. Then the master process is run with the command line
arguments including total number of clients and malicious
proportion. After spawning each client with their respective
independent and identically distributed fraction of the
data, each client trains with it’s own local model. There is
a shared folder which each client writes the model weights
and the global model reads the weights from. Each client,
when done with training, sends the server an update on
the location of it’s trained weights. The server reads the
weights asynchronously and updates the global model using
the Algorithm Mentioned in the next section. The inference



program, containing a separate test data not known to any
client or server. The output gives inference results which are
recorded for each round.

V. DESCRIPTION OF THE ALGORITHM

We have used the standard Federated Weighing Algorithm
described below used in McMahan et. al, Communication-
Efficient Learning [?] [?]

Algorithm 2 FederatedAveraging. The K clients are indexed
by k; B is the local minibatch size, E is the number of local
epochs and nisthelearning rate

0: Initialize wgq
each round t=1,2,...
0: m «— max(C.K, 1)
. St «— (random set of mclients)
each client k € Stinparallel
. w§, | « ClientUpdate(k, wt)

PWEHl < Zf:l W

. ClientUpdate(k,w) : fRun on client k}

. B « (split Pt into batches of size B)
each local epoch i from 1 to E
batch b € B

0: w— w— nAl(w; b)

0: return W to server

=0

(=]

[=E=R el e

The algorithms averages the weights obtained from each
client and updates the global model weights for each round.

VI. EXPERIMENT

The local training hyperparameters we used the train the
local CNN model include the following :-

1) 20 epochs
2) Adam Opimizer
3) Categorical Cross Entropy Loss

The global hyperparamters include the following :-

1) Maximum Number of Clients Spawned
2) Proportion of Malicious Clients (Mal-rate)

We have used a convolutional neural network at the local
client side to train on their respective data. The summary of
this is shown in Fig |4l In addition, we have also used a feed-
forward neural network with an model summary shown in
figure [3]

The training accuracy and loss history of the said local
agent models are shown in figure [6] and figure [7] respectively.
As expected, the local accuracy and loss does improve with
epochs.

Next, we consider different attack and defence scenarios and
compare and contrast how the global averaging is affected by
this.

A. Attack Scenario : Model Poisoning

. In particular, let K be the total number of clients. At each
round t, the server randomly selects C K clients for some C
< 1. Let St be this set and Nk be the number of samples at
client k. Denote the model parameters at round t by W¢. Each
selected user computes a model update, denoted by AWK,
based on their local data. The server updates its model by
aggregating the AW’;s, ie.,

Kk
D keS: PYAN

Zkest Nk

where 1) is the server learning rate. We model the parameters
of backdoor attacks as follows.

Obtaining a backdoored model :- To obtain a backdoored
model W , we assume that the attacker has a set Dmq which
describes the backdoor task — for example, different kinds of
green cars labeled as birds. We also assume the attacker has
a set of training samples generated from the true distribution
D¢rn. Note that for practical applications, such data may be
harder for the attacker to obtain.

Unconstrained boosted backdoor attack :- In this case, the
adversary_trains a model W based on W¢, Dmgr and Derp
without any constraints and sends the update back to the
service provider. One popular training strategy is to initialize
with W¢ and train the model with D¢rp U Dmqq for a few
epoches. This attack /generally results in a large update norm
and can serve as a baseline.

Norm bounded backdoor attack :- Unconstrained backdoor
attacks can be defended by norm clipping as discussed below.
To overcome this, we consider the norm bounded backdoor
attack. Here at each round, the model trains on the backdoor
task subject to the constraint that the model update is smaller
than M/@B. Thus, model update has norm bounded by M after
boosted by a factor of §. This can be done by training the
model using multiple rounds of projected gradient descent,
where in each round we train the model using the uncon-
strainted training strategy and project it back to the [ ball of
size M/ around Wt.

We run this attack model with 20 clients and with a given
proportion of malicious clients. Fig [8| is the graph obtained
for global model as the proportion of malicious clients. As we
see, the accuracy of the global model drastically decreases
with increasing proportion.

Wiyl =Wr+ 1

B. Defence Scenario : Protector

1) Random selection of Clients: We have taken random
clients weight updates for global server updates.

2) Average the all clients weight: We have averaged the
weight of all the client’s updates for the global server.

3) Norm thresholding of updates: Since boosted attacks
are likely to produce updates with large norms, a reasonable
defense is for the server to simply ignore updates whose norm
is above some threshold M; in more complex schemes M could
even be chosen in randomized fashion. However, in the spirit
of investigating what a strong adversary might accomplish, we
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Layer (type) Qutput Shape Param #
convad_1 (ConvaD) (None, 24, 24, 64) 1664
activation_1 (Activation) (None, 24, 24, &4) o
convad_2 (ConvaD) (None, 20, 20, &4) 102464
activation 2 (Activation) (None, 20, 20, &4) o
dropout_1 (Dropout) (None, 20, 20, &4) o
flatten_ 1 (Flatten) (Wone, 25600} o
dense 1 (Dense) (None, 128) 3276928
activation 3 (Activation) (None, 128) 0
dropout_2 (Dropout) (None, 128) o
dense 2 (Dense) (None, 10) 1290

Total params: 3,382,346
Trainable params: 3,382, 346
Non-trainable params: 0

Fig. 4: Convolutional Layer Model Summary

assume the adversary knows the threshold M, and can hence
always return malicious updates within this magnitude.

With this defensive code, the rounds were run again to
obtain the convergence of the global model. The global
model seemed to converge as shown in figure [9]

VII. TECHNICAL CHALLENGES AND LIMITATIONS

Initialization of shared weights posed a problem. When we
initialized the weights randomly, we found out that the loss of

weights checkpoint storing local model weights
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Model: "sequential"

Layer (type) tutput Shape Param #
dense (Dense) (Wone, 32) 25120
dense_1 (Dense) (None, 16) 528
dense_2 (Dense) (None, 10) 170

Total params: 25,818
Trainakle params: 25,818
Hon-trainable params: 0

Fig. 5: Feedforward Layer Model Summary
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Fig. 6: Accuracy of local model
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Fig. 16: Random Initialization Problem with the local model

the global model does not converge. This is also supported by
the theory in the the published paper Communication Efficient
Learning [6]. It is depicted and shown in the figure [T6]

Hence, we decided to use a shared initial random
weights. In the comparitive section, we also intitialize with
the global weights obtained from the previous rounds and
present the results.

VIII. RESULT AND COMPARITIVE ANALYSIS

We have got more than 80% accuracy for global model with
40 benign clients. To verify the variation with the number of
rounds, we once again, use that as a hyper parameter and train
with varying malicious rate and plot the loss and accuracy
curves for the same. From the figures [I0] and [TT] we notice
that the impact of malicious clients are less on the number of
rounds. However, as we increase the malicious proportion, we
find out that the accuracy is no more increasing steadily, but
sometimes decreases at one point. This is from the effect of
a direct attack. From figure T3] we find that this attack is more
pronounced as the loss seems to be increasing with number
of rounds.

IX. CONCLUSIONS

In this work, we have explored the vulnerability of the
update aggregation step of federated learning. Starting with
a uniform and independent and identically distributed data
in each client, we have shown that the global model does
converge with little or no impact on the performance. We have
implemented attacks based on which we have devised strategy
to prevent those attacks. For that, we have implemented a
malicious client using data poisoning attack strategy for which
we classified one class and another and also shuffled all
classes. We have also implemented model poisoning attack
strategy. For that we have used random sampling and boosted
attacks. For protector, we chose a random client and used
norm thresholding of updates. We were able to find anomalies
among the benign updates.
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